Ensemble sufficient dimension folding methods for analyzing matrix-valued data
نویسندگان
چکیده
منابع مشابه
Sufficient Dimension Reduction for Longitudinal Data
Correlation structure contains important information about longitudinal data. Existing sufficient dimension reduction approaches assuming independence may lead to substantial loss of efficiency. We apply the quadratic inference function to incorporate the correlation information and apply the transformation method to recover the central subspace. The proposed estimators are shown to be consiste...
متن کاملCombination of Ensemble Data Mining Methods for Detecting Credit Card Fraud Transactions
As we know, credit cards speed up and make life easier for all citizens and bank customers. They can use it anytime and anyplace according to their personal needs, instantly and quickly and without hassle, without worrying about carrying a lot of cash and more security than having liquidity. Together, these factors make credit cards one of the most popular forms of online banking. This has led ...
متن کاملEnsemble Data Mining Methods
INTRODUCTION Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be a...
متن کاملSmoothing of Matrix-Valued Data
I want to thank Joachim Weickert and Christoph Schnörr for their support. I hereby certify that the work reported in this diploma thesis is my own and that work performed by others is appropriately cited. Abstract During the last decade diffusion methods became more and more popular in the fields of image processing and computer vision. They are used for smoothing and regularization in cases wh...
متن کاملDimension Reduction Using Rule Ensemble Machine Learning Methods: A Numerical Study of Three Ensemble Methods
Ensemble methods for supervised machine learning have become popular due to their ability to accurately predict class labels with groups of simple, lightweight “base learners.” While ensembles offer computationally efficient models that have good predictive capability they tend to be large and offer little insight into the patterns or structure in a dataset. We consider an ensemble technique th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2016
ISSN: 0167-9473
DOI: 10.1016/j.csda.2016.05.001